Application of DARWIN™ to evaluate risk of fracture due to material anomalies in gas turbine engines

Ahsan Jameel, Honeywell Aerospace
Darryl Lehmann, Pratt & Whitney
Jon Tschopp, GE Aircraft Engines
Jon Dubke, Rolls-Royce Corporation

6th Annual FAA/Air Force/NASA/NAVY Workshop on the Application of Probabilistic Methods (PM) to Gas Turbine Engines
March 18-20
Solomon’s Island, MD
Outline

• Summary of DARWIN™ use at the OEMs
• Evaluation of DARWIN™ at the four TRMD OEMs
 – Capability Analysis
 – Sensitivity Analyses
• Applications of DARWIN™ at the OEMs
 – Hard Alpha Risk Analysis
 • FAA Certification Analysis
 – Surface Damage Tolerance Analysis
• Acknowledgements
Summary of DARWIN™ use at the OEMs

• Four OEM’s have licensed DARWIN™ as a tool for Hard Alpha risk analysis
• FAA certification analyses have been performed on more than 10 components using DARWIN™
• About 20 engineers at OEM companies have been trained in the use of DARWIN™
• Problem Statement: The hard alpha risk analysis process should be robust to the analyst and his or her experience

• Experience with Hard Alpha risk analysis using DARWIN™
 – Variability in analysis due to analyst bias

• Solution
 – Construct a process for use of DARWIN™ that would reduce the analyst bias
 – The process has guidelines for zone definition, plate size, plate orientation, and crack placement

• How was this process arrived at?
 – By several DOE’s using model geometries and stresses based on the Advisory Circular test case
Plan: To determine whether the POF is affected by the use of different seeds

Factors
- Crack Placement
- Plate Orientation
- Plate Size
- Zone Size
- Stress Level
- Stress Gradient
- Seed
- Sample Size
- Material

Result: The choice of seeds does not impact the final POF as long as the sample size is sufficient for the problem.
Capability Analysis: Example of a DOE

Plan: To establish transfer function between inputs (volume, stress) and output (POF)

Factors
- Crack Placement
- Plate Orientation
- Plate Size
- Zone Size
- Stress Level
- Stress Gradient
- Seed
- Sample Size
- Material

Result: Regression equations yielded a relationship between volume and stress and POF that can be used to guide the analyst in choice of zones (POF = 10^C X (stress)^m X Volume)
Evaluated the capability of DARWIN™ as a Measurement System for determining risk of fracture in Titanium Components due to Hard Alpha

- Including guidelines for zone definition, crack orientation, etc.

Capability Analysis

- Conducted a Measurement System Analysis (Crossed)
 - Parts selected represent a wide range of geometries, volumes, and stress levels

<table>
<thead>
<tr>
<th>Analyst/Operator</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Measurement</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
Process Risk*

Falsely rejecting good parts
Producer’s Risk
\[\alpha \] is negligible

Falsely accepting bad parts
Consumer’s Risk
\[\beta \] is negligible

MSE Results suggest that the process as structured reduces the beta risk to a negligible level

*based on customer control limits:
AC33.14-1 DTR
Sensitivity Studies

• Sensitivity Studies conducted to support the effort underway for HA distributions update, for example:
 – Impact of vacuum crack growth data
 – Impact of crack growth scatter
 – Impact of crack aspect ratio

• Sensitivity studies also conducted to evaluate new features of the software, for example:
 – Importance Sampling
 – Enhanced modeling of stresses within a zone

• Sensitivity studies conducted on actual components and the Advisory Circular test case
Sensitivity Study I: Impact of Titanium Vacuum Crack Growth Data

• **Objective:** Quantify the impact of vacuum crack growth data on predicted POF for actual components

• **Component probabilistic assessments** were made assuming air data for surface and subsurface FM calculations (AC 33.14-1), and then air for surface and vacuum for subsurface

• **Results show** a systematic reduction in POF of 25 to 50 % for the air + vacuum without inspection, and 15 to 35% reduction in POF with inspection
Application of DARWIN™ to evaluate risk of fracture due to material anomalies in gas turbine engines

Sensitivity Study I: Impact of Titanium Vacuum Crack Growth Data

Air + Vacuum vs Air FCG Data - Sensitivity Study Results (24 zones)

SwRI Vacuum & Air FCG Data

SwRI Air FCG Data

<table>
<thead>
<tr>
<th></th>
<th>Vacuum & Air FCG data</th>
<th>Air FCG data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wo/insp</td>
<td>w/insp</td>
</tr>
<tr>
<td>AC Ring Disk</td>
<td>7.44e-9</td>
<td>6.19e-9</td>
</tr>
<tr>
<td>Reduction</td>
<td>4.0 X</td>
<td>3.9 X</td>
</tr>
<tr>
<td>GE Fan Disk</td>
<td>0.60</td>
<td>0.32</td>
</tr>
<tr>
<td>Reduction</td>
<td>1.7 X</td>
<td>1.3 X</td>
</tr>
</tbody>
</table>

Application of DARWIN™ to evaluate risk of fracture due to material anomalies in gas turbine engines
Sensitivity Study II: Importance Sampling versus Monte Carlo

• Objective: Evaluate the Importance Sampling method for probabilistic risk analysis

• Importance Sampling used on three components at one OEM
 – Three analysts, three components, nine measurements per component

• Importance Sampling shows gains in efficiency along with much tighter confidence bounds compared to Monte Carlo
Sensitivity Study II: IS vs MC: Results

<table>
<thead>
<tr>
<th>Seed 1</th>
<th>Rand 1</th>
<th>Rand 2</th>
<th>Seed 1</th>
<th>Rand 1</th>
<th>Rand 2</th>
<th>Seed 1</th>
<th>Rand 1</th>
<th>Rand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC (100K)</td>
<td></td>
<td></td>
<td>MC (Million)</td>
<td></td>
<td></td>
<td>IS (10K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>Mean</td>
<td>UB</td>
<td>LB</td>
<td>Mean</td>
<td>UB</td>
<td>LB</td>
<td>Mean</td>
<td>UB</td>
</tr>
</tbody>
</table>

Normalized POF

Time (seconds)
Applications of DARWIN™: HA Risk Analysis for engine certification by the FAA

Methodology

• 2D axisymmetric FE stress models used for analysis

• Basic elements of HA risk analysis using DARWIN™
 – Industry standard (Aerospace Industries Association of America, Inc. [AIA] Rotor Integrity Sub-Committee [RISC] default) HA inclusion distributions
 – The crack growth rate data for titanium in air and the associated stress-strain curve data from the OEM’s materials design database
 – Crack growth analysis (Flight_Life is internal to DARWIN™)
 – A probability method (MonteCarlo) for random sampling
 – Appropriate NDT inspections, and associated probability of detection (POD) curves
A Fan-Disk DARWIN™ Model

13 Zone Model

42 Zone Model

Application of DARWIN™ to evaluate risk of fracture due to material anomalies in gas turbine engines
A Radial Compressor Disk DARWIN™ Model

15 Zone Model

60 Zone Model
Fan/Radial Compressor Results

Fan and Radial Compressor
HA Risk Convergence With Zone Refinement

Fan and Radial Compressor Disk

Events/Flight-Cycle vs. Number of Zones

Application of DARWIN™ to evaluate risk of fracture due to material anomalies in gas turbine engines
Page - 17
Applications of DARWIN™: Surface Damage Risk Analysis

• Part Selected: A highly stressed critical bolt hole on a commercial application

• Material: IN-718 with an OEM’s proprietary processing
Surface Damage Risk Analysis: Stress

- Full 3-D Finite Element Model was developed
- Stress Gradient is presented as Normalized Stress versus Normalized Distance (to the distance between the bolt holes)

![Stress Gradient at the Bolt Hole](image-url)

Normalized Stress

Normalized Distance
Surface Damage Risk Analysis: CCGL

- Three cases were run using an OEM’s code and DARWIN™
 - Initial crack: 0.001 X 0.001 with a stress gradient
 - Initial Crack: 0.002 X 0.002 with a stress gradient
 - Initial Crack: 0.001 X 0.001 with a constant stress of 134 KSI

<table>
<thead>
<tr>
<th>Initial Crack</th>
<th>L/D</th>
<th>Gradient</th>
<th>Material</th>
<th>CCGL Honeywell/DARWIN</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 X 0.001</td>
<td>0.94</td>
<td>YES</td>
<td>IN-718</td>
<td>1.02</td>
<td>Gradient</td>
</tr>
<tr>
<td>0.001 X 0.001</td>
<td>0.94</td>
<td>NO</td>
<td>IN-718</td>
<td>0.92</td>
<td>Constant</td>
</tr>
<tr>
<td>0.002 X 0.002</td>
<td>0.94</td>
<td>YES</td>
<td>IN-718</td>
<td>1.05</td>
<td>Gradient</td>
</tr>
</tbody>
</table>

- DARWIN™ and OEM CCGL analyses agree well
- Surface Crack in a plate solution used for compatibility with OEM’s code
- OEM’s material design database properties were used
• DARWIN™ was used with the RISC EIFS distribution to compute POF
Surface Damage Risk Analysis: POF

- POF is calculated
- Comparison of DARWIN™ calculated POF with POF calculated using OEM’s probabilistic techniques is ongoing
Acknowledgements

• DARWIN™ was developed under Grants 95-G-041 and 99-G-016 from the Federal Aviation Administration

• Bruce Fenton and Joe Wilson of the FAA William J. Hughes Technical Center and Tim Mouzakis of the FAA New England Regional Center are thanked for their continuing support

• Honeywell: Eddie Perez-Ruberte, Kim Kington, Waled Hassan, and Harry Kington